Introduction to Databases

SARCAR Sayan

Faculty of Library, Information, and
Media Science

Contents

* Purpose of Database System
*View of Data

* Data models

« Data definition language

« Data manipulation language

*SQL

For more detailed information, please visit
http://codex.cs.yale.edu/avi/db-book/db6/slide-dir/index.html

T
(1A
() University of Tsukuba

Database Management System (DBMS)

Collection of interrelated data

Set of programs to access the data

DBMS contains information about a particular enterprise
DBMS provides an environment that is both convenient
and efficient to use.

» Database Applications:
« Banking: all transactions
» Airlines: reservations, schedules
« Universities: registration, grades
« Sales: customers, products, purchases
« Manufacturing: production, inventory, orders, supply chain

 Human resources: employee records, salaries, tax
deductions

« Databases touch all aspects of our lives %\%ﬁ Mg N

University of Lsukuba

Purpose of Database Systems

* In the early days, database applications were built on top
of file systems

« Drawbacks of using file systems to store data:
« Data redundancy and inconsistency
« Multiple file formats, duplication of information in different files
« Difficulty in accessing data

Need to write a new program to carry out each new task
 Data isolation — multiple files and formats
* Integrity problems

* Integrity constraints (e.g. account balance > 0) become part of
program code

» Hard to add new constraints or change existing ones

& - % ALY

University of Tsukuba

Purpose of Database Systems

Atomicity of updates
« Failures may leave database in an inconsistent state with
partial updates carried out
« E.g. transfer of funds from one account to another should
either complete or not happen at all
Concurrent access by multiple users
« Concurrent accessed needed for performance
« Uncontrolled concurrent accesses can lead to
inconsistencies
« — E.g. two people reading a balance and updating it at the
same time
Security problems
« Database systems offer solutions to all the above problems

&é% ﬁi{EZ)\F

sity of Tsukuba

Level of Abstraction

 Physical level describes how a record (e.g., customer) is
stored.
* Logical level: describes data stored in database, and the
relationships among the data.
type customer = record
name : string;
street : string;
city : integer;
end;
* View level: application programs hide details of data types.
Views can also hide information (e.g., salary) for security

pUurposes.

&é% ﬁﬁ.{ﬂi}\P

sity of Lsukuba

Instances and Schemas

Similar to types and variables in programming languages
Schema - the logical structure of the database
e.g., the database consists of information about a set of customers
and accounts and the relationship between them)
« Analogous to type information of a variable in a program
 Physical schema: database design at the physical level
 Logical schema: database design at the logical level
Instance — the actual content of the database at a particular point in time
Analogous to the value of a variable
Physical Data Independence — the ability to modify the physical schema
without changing the logical schema
- Applications depend on the logical schema

In general, the interfaces between the various levels and components should be
well defined so that changes in some parts do not seriously influence others.

SR A R N Wy
ﬁ%”’@ RPN

Unii r('.l‘_\'l.f‘}! Q/ Tsukuba

Data models

A collection of tools for describing
« data
« data relationships

 data semantics

« data constraints
Entity-Relationship model
Relational model
Other models:

« object-oriented model

 semi-structured data models

 QOlder models: network model and hierarchical model

53 £
i

RPN

University of Lsukuba

Entity-Relationship Model

Example of schemas in the entity-relationship model

customer-name
customer-id

customer

customer-street

depositor

> @D

account

S i)y

__.-;:-I%I.r'._:.l: \

University of Takuba

Entity-relationship Model

. E-R model of real world
v Entities (objects)
. E.g. customers, accounts, bank branch
v Relationships between entities
. E.g. Account A-101 is held by customer Johnson
. Relationship set depositor associates customers with accounts
Widely used for database design

v Database design in E-R model usually converted to design in the
relational model (coming up next) which is used for storage and
processing

| S

wrversity of lsukuba

Relational Model

Example of tabular data in the relational model

Attributes
P

customer-id izf;:;mer- g;g:;n " z;;;tomer— iﬁﬁgg—
192-83-7465 | Johnson Alma Palo Alto A-101
019-28-3746 Smith North e A-215
192-83-7465 Johnson Alma Palo Alto A-201
321-12-3123 Jones Main Harrison A-217
019-28-3746 Smith North Rye A-201

University of Tsukuba

A Sample Relational Database

—~r

customer-id | customer-name customer-street customer-city
192-83-7465 Johnson 12 Alma St. Palo Alto
019-28-3746 Smith 4 North St. Rye
677-89-9011 Hayes 3 Main St. Harrison
182-73-6091 Turner 123 Putnam Ave. Stamford
321-12-3123 Jones 100 Main St. Harrison
336-66-9999 Lindsay 175 Park Ave. Pittsfield
019-28-3746 Smith 72 North St. Rye
(a) The customer table

FEFF TP S pOe] R iy 1 FIRpn customer-id | account-number
A-101 500 192-83-7465 A-101
A-215 700 192-83-7465 A-201
A-102 400 019-28-3746 A-215
A-305 350 677-89-9011 A-102
A-201 900 182-73-6091 A-305
A-217 750 321-12-3123 A-217
A-222 700 336-66-9999 A-222

(b) The account table 019-28-3746 A-201

(c) The depositor table

University of Takuba

Data Definition Language

. Specification notation for defining the database schema

v E.Q.
create table account (
account-number char(10),
balance integer)

. DDL compiler generates a set of tables stored in a data
dictionary

Data dictionary contains metadata (i.e., data about data)
v database schema
v Data storage and definition language

. language in which the storage structure and access methods
used by the database system are specified

- Usually an extension of the data definition language

R IN

versity of Lsukuba

Data Manipulation Language

. Language for accessing and manipulating the data organized by
the appropriate data model

v DML also known as query language

. Two classes of languages

v Procedural — user specifies what data is required and how to get
those data

v Nonprocedural — user specifies what data is required without
specifying how to get those data

. SQL is the most widely used querylanguage

- FR NG

versity of Lsukuba

SQL

. SQL: widely used non-procedural language

v E.g. find the name of the customer with customer-id 192-83-7465
select customer.customer-name
from customer
where customer.customer-id = ‘192-83-7465’

v E.g. find the balances of all accounts held by the customer with
customer-id 192-83-7465
select account.balance
from depositor, account
where depositor.customer-id = “192-83-7465" and
depositor.account-number = account.account-number

. Application programs generally access databases through

v Language extensions that allow embedded SQL

v Application program interfaces (e.g. ODBC/JDBC) which allow SQL
queries to be sent to a database

The Relational Model

Structure of Relational Databases

Relational Algebra

Tuple Relational Calculus

Domain Relational Calculus

Extended Relational-Algebra-Operations
. Modification of the Database

Views

> A
AN +
A University of Tsukuba

Example of a Relation

account-number | branch-name | balance
A-101 Downtown 500
A-102 Perryridge 400
A-201 Brighton 900
A-215 Mianus 700
A-217 Brighton /750
A-222 Redwood 700
A-305 Round Hill 350

Basic Structure

. Formally, given sets D4, D5, D, a relation ris a subset of
DixDyx ... XD,
Thus a relation is a set of n-tuples (a4, a,, ..., a;)where
aje D,

. Example: if

customer-name = {Jones, Smith, Curry, Lindsay}
customer-street = {Main, North, Park}
customer-city = {Harrison, Rye, Pittsfield}
Then r = { (Jones, Main, Harrison),
(Smith, North, Rye),
(Curry, North, Rye),
(Lindsay, Park, Pittsfield)}
is a relation over customer-name x customer-street x customer-city

Attribute Type

Each attribute of a relation has a name

The set of allowed values for each attribute is called the domain
of the attribute

Attribute values are (normally) required to be atomic, that is,
indivisible
v E.g. multivalued attribute values are not atomic

v E.g. composite attribute values are not atomic

Relation Schema

Aq, Ao, ..., Apareattributes
R = (A4, Ag, ..., A,) Is a relation schema

E.g. Customer-schema =
(customer-name, customer-street, customer-city)

rHR) is a relation on the relation schemaR

E.g. customer (Customer-schema)

9 s ST PO P T
Ay Ui

versity of Lsukuba

Relation Instance

. The current values (relation instance) of a relation are
specified by a table

. An element tof ris a tuple, represented by a row in atable

‘M attributes
customer-name | customer-street | customer-city
Jones Main Harrison
Smith North Rye tuples
Curry North Rye
Lindsay Park Pittsfield

customer

Relations are unordered

. Order of tuples is irrelevant (tuples may be stored in an arbitrary order)

. E.g. account relation with unordered tuples

account-number | branch-name | balance
A-101 Downtown 500
A-215 Mianus 700
A-102 Perryridge 400
A-305 Round Hill 350
A-201 Brighton 900
A-222 Redwood 700
A-217 Brighton 750

Database

A database consists of multiple relations

Information about an enterprise is broken up into parts, with each
relation storing one part of the information

E.g.: account : stores information about accounts
depositor : stores information about which customer
owns which account
customer : stores information about customers

Storing all information as a single relation such as
bank(account-number, balance, customer-name, ..)
results in

v repetition of information (e.g. two customers own an account)

v the need for null values (e.g. represent a customer without an
account)

Normalization theory deals with how to design relational
schemas

R YN

University of Tsukuba

The Customer Relation

customer-name | customer-street | customer-city
Adams Spring Pittsfield
Brooks Senator Brooklyn
Curry North Rye
Glenn Sand Hill Woodside
Green Walnut Stamford
Hayes Main Harrison
Johnson Alma Palo Alto
Jones Main Harrison
Lindsay Park Pittsfield
Smith North Rye
Turner Putnam Stamford
Williams Nassau Princeton

The Depositor Relation

customer-name | account-number
Hayes A-102
Johnson A-101
Johnson A-201
Jones A-217
Lindsay A-222
Smith A-215
Turner A-305

e " & AR Lh

s MY V]I 25

D lﬁ. { HC } b
: University of Tsukuba

ER Diagram for the Banking Enterprise

account-number

account

depositor

customer

customer-name

cusmmer—city

customer-street

account-branc

borrower

SCETE

branch-name

assefs

branch

loan

amount

A\

\ ﬂ&! AT JA L)
S I NP

University of Tsukuba

Keys

LetK 2R

K is a superkey of R if values for K are sufficient to identify a
unique tuple of each possible relation r(R) by “possible r’ we
mean a relation r that could exist in the enterprise we are
modeling.

Example: {customer-name, customer-street} and

{customer-name}
are both superkeys of Customer, if no two customers can

possibly have the same name.

K is a candidate key if K isminimal
Example: {customer-name} is a candidate key for Customer,
since itis a superkey {assuming no two customers can possibly

have the same name), and no subset of it is asuperkey.

7 FR PN
Uni 7

versity of Lsukubs

Determining Keys from the ER Sets

. Strong entity set. The primary key of the entity set becomes
the primary key of the relation.

. Weak entity set. The primary key of the relation consists ofthe
union of the primary key of the strong entity set and the
discriminator of the weak entity set.

. Relationship set. The union of the primary keys of therelated
entity sets becomes a super key of the relation.

v For binary many-to-one relationship sets, the primary key of the
“‘many” entity set becomes the relation’s primary key.

v For one-to-one relationship sets, the relation's primary key can be
that of either entity set.

v For many-to-many relationship sets, the union of the primary keys
becomes the relation’s primary key

G sy

versity of Lsukuba

Schema Diagram for the Banking
Enterprise

branch account depositor customer
branch-name ‘-4—‘ account—number <—| customer—name — customer—name
branch—city branch—name account-number customer—street
customer—cih
assets bﬂjﬂnﬂf J
loan borrower
loan—number |je—— customer—name
branch-name loan—number
amount

AR INGE

University of Takuba

Query language

Language in which user requests information from the database.
Categories of languages

e procedural

* non-procedural

“Pure” languages:
* Relational Algebra
» Tuple Relational Calculus
 Domain Relational Calculus

Pure languages form underlying basis of query languages that
people use.

£ &

BN
L

; ;
piverviety of Lukuba

Relational Algebra

Procedural language

Six basic operators
* select
* project
e union
» set difference
« Cartesian product
* rename

The operators take two or more relations as inputs and
give a new relation as a result.

n?ug}’,u?ﬂ Aol |-
@G> ﬁzﬂz}\?

rsity of Isukuba

Select operation - Example

* Relationr

®Gp-grp>5(l)

B|C| D
o | 1 7
Bl S| 7
pl12| 3
B 23] 10
B|C|D
o | 1 7
B |23 10

KA~ \.! !E }\‘ AV
5 ! A 4 »
r-.- -q ‘:\:‘ ﬁ(AS F -

University of Tsubkuba

Select operation

Notation: G ,(r)
p is called the selection predicate
Defined as:

Gp(r) = {t|te randp(t)}

Where p is a formula in propositional calculus consisting
of terms connected by : A (and), v (or), - (not)
Each term is one of:

<attribute> op <attribute> or <constant>
where opisone of. =, #, >, > <. <
Example of selection:
O pranch-name= “Penyrfdge”(account)

NP Rl o

e AR ‘\}:ij i
«,%’\ NP
1]} University of Isukuba

Project operation -example

Relation r:

ITac ()

Q

10
20
30
40

% TRC S W Y

Ol |l - o

s T

nvnm.,

@ .

LR{BU\?

rsity of sukuba

Project operation

Notation:

[Ia1, A2, ..., Ak (1)
where A4, Ao are attribute names and ris a relationname.

The result is defined as the relation of kK columns obtained by
erasing the columns that are notlisted

Duplicate rows removed from result, since relations are sets

E.g. To eliminate the branch-name attribute of account
[Taccount-number, balance (2CCOUNT)

AN

R IN
i

versity of Lsukuba

Union operation - Example

Relations r, s:

A| B Al B
a | 1 a | 2
o | 2 B | 3
1 s
r
rus: Al B

LW = N =

Union Operation

Notation: ru s
Defined as:

ros={t|terortes}

. Forru stobevalid:
1. r, s must have the same arity (same number of attributes)

2. The attribute domains must be compatible (e.g., 2nd column
of r deals with the same type of values as does the 2nd
column of s)

. E.g., tofind all customers with either an account or aloan
[Icustomer-name (d€POSItOr) U 1leystomer-name (POrrower)

77 JR AN '}_’i

University of Tsukuba

Set Difference - Example

Relations r, s:

- YN PN

wvevsity of lsukuba

Set Difference

. Notationr-s
. Defined as:
r—s={t|terandt ¢ s}
. Set differences must be taken between compatible relations.

v rand s must have the same arity

v afttribute domains of r and s must be compatible

Cartesian Product - Example

Relations r, s:

rxs:

Al B C|D| E

oL al| 10| a
B | 70| a

pl2 8 | 20| b
v | 10| b

S

A|B|C|D|E

al| 1T|a]|10]| a

a| T|p |19 a

o| 1| p|20] b

a| Ty 10| b

B| 2| a |10 a

Bl2]|B|10] a

2 20
Bl 2] |70 ’

R LN

University of Tsukuba

Cartesian Product Operation

Notation rx s

Defined as:

rxs={tqg|terandqg s}

Assume that attributes of r(R) and s(S) are disjoint. (Thatis,
R S =0U).

If attributes of r(R) and s(S) are not disjoint, then renaming must
be used.

h 5 o R
AR IM A “—T
Y University o etiba

[sk

Rename Operation - Example

B Allows us to refer to a relation, (say E) by more than one name.

returns the expression £ under the name X

B Relations r

A

B

X

[

1
2

JJ

P x (E)

B orxp () 124

T R R

nBls.A

o D =

R ™R

s.B

o T o B

s D2 s

(Unii

versity of Lsukuba

Rename Operation

. Allows us to name, and therefore to refer to, the results of
relational-algebra expressions.

Allows us to refer to a relation by more than one name.

Example:

P x (E)
returns the expression E under the name X

If a relational-algebra expression E has arity n, then

Px (A1, A2, ..., An) (E)
returns the result of expression E under the name X, and withthe

attributes renamed to A1, A2,, An.

Banking example

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customer-only)
account (account-number, branch-name, balance)

loan (loan-number, branch-name, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)

SV gx- vt 1.,
< NN UNGE
A Lh

wrversity of lsukuba

Example Queries

Find all loans of over $1200

Gamounf > 1 200 (l‘oan)

Find the loan number for each loan of an amount greaterthan
$1200

[joan-numper (Samount > 1200 (loan))

9 s ST PO P T
Ay Ui

versity of Lsukuba

Example Queries

Find the names of all customers who have a loan, an account, or
both, from the bank

Ieystomer-name (DOrrower) U 1leystomer-name (d€positor)

Find the names of all customers who have a loan and an account
at bank.

Icystomer-name (DOrrower) M Ileystomer-name (d€positor)

Example Queries

Find the names of all customers who have a loan at thePerryridge
branch.

I lcustomer-name (Gbranch—name=“Perryrfdge”

(Spborrower loan-number = loan.loan-numbeAPOrrower x loan)))

Find the names of all customers who have a loan at thePerryridge
branch but do not have an account at any branch of thebank.

Icustomer-name (Obranch-name = “Perryridge”

(Gborrower.loan-number = loan.loan-number{POrrower x loany))

[customer-name(depositor)

Example Queries

. Find the names of all customers who have a loan at thePerryridge
branch.

v Query 1

chstomer—name(gbranch—name = "Perryridge”

(Sborrower.loan-number = loan.loan-number{POrrower x loan)))

v Query 2

chstomer-name(gluan.Ioan-number = borrower.loan—number(
(Sbranch-name = “Perryridge’(l0an)) x
borrower)

Example Queries

Find the largest account balance
v Rename account relation as d

v The query then is:

Ipajance(@ccount) - Iaccount balance

(Caccount balance < d.palance (2€count x py (account)))

g Ak N

> 5
U

wrversity of lsukuba

Formal Definitions

. A basic expression in the relational algebra consists of either one
of the following:

v A relation in the database

v

A constant relation

. Let E;and E,be relational-algebra expressions; the following are
all relational-algebra expressions:

v

v

v

Equ E>s

Eq-E>

E1XE»

Sp (E4), Pis a predicate on attributes in E4

IIs(E1), Sis a list consisting of some of the attributes in E4

P x (E¢), x is the new name for the result of E4

| S

wrversity of lsukuba

Additional Operations

We define additional operations that do not add any power to

the relational algebra, but that simplify common queries.

. Set intersection
. Natural join

. Division

. Assignment

3 82 O N

University of Tsukuba

Set-Intersection Operation

. Notation:rn's
. Defined as:
. rms={t|terandfec s}
. Assume:
v I, § have the same arity
v attributes of r and s are compatible

. Note:rms=r-(r-s

e & - % »> - Y
‘ Uni

versity of Lsukuba

Set-Intersection Operation - Example

Relationr,s: | A B

A B
z ; a | 2
p | 1 P
r S
™S A B
o | 2

s N5 o Aohs Wi
T RPN
University of Tsukuba

0
(i

Natural-Join Operation

» Notation: r g«

. Let rand s be relations on schemas R and S respectively.The result is a
relation on schema R « S which is obtained by considering each pair of

tuples tr from r and tg from s.

. Iftfrand ts have the same value on each of the attributes in R » S, a tuple ¢
iIs added to the result, where

v thas the same value as fron r

v thas the same value as tgon s

« Example:
R = (A, B, C,D)
S=(E, B, D)

. Resultschema = (A, B, C, D, E)
. rxlis defined as:

IyA rB rc rD sEOrB=sBrD=5sD(rXs))

Natural-Join Operation - Example

O ~w U

T © @O o

— M= 0&Mm

Al \ o AT JA L)

ty of lsukuba

5 =8 =w

T © @ © O

T8 =

11112

T © O O O

A|lB|C|D|E

5 8 8 Tw

83 =0 >0

Aol Y B Y

A|lB|C|D

D =~ 5w

Relations r, s:

rx

Division Operation

=395

. Suited to queries that include the phrase “forall”.

. Letrand s be relations on schemas R and S respectively
where

v R=(Aq, ..., Am, B1, ..., Bp)

v S=(Bq, ..., Bp)

The result of r = s is a relation on schema
R-S=(A1,...Anp)

r+3={f|tEHH_S{F’)E\\?’UES(tUEr)}

nlr \ ﬂ&! AT JA L)

L

versity of Lsukuba

Division Operation - Example

Relations r, s:

I
o
W]

T M M & O =<2 T Q Q Q
P =2 Oy P LW = = = W M =

r+s A r
L
; 56 ooy
() University of Tsukuba

Another Division Example

Relations r, s:

I
o
O
O
m
-
m

o
-

—3 =i =i () =& =i =3 =i

222 ™»®R QR
O 0 090 00 90 00 00 0
D<= <= <= =2 <=2 =2 Q
OO0 OO0 OTO O

'1

I
o
O

Division Operation

. Property
v Letg-r+s
v Then q is the largest relation satisfyinggx scr

. Definition in terms of the basic algebraoperation
Let r(R) and s(S) be relations, and let Sc R

r+s=1IR.g (N -llr.s (Ilr.s () X 8) — IIr.s s(")

To see why

v IIRr.s s(r) simply reorders attributes of r

v IIR.s(IIr.g (1) x s) = IIR-g s(r)) gives those tuples tin

I1r_g (r) such that for some tuple u € s, tu ¢ r.

Assighment Operation

The assignment operation («) provides a convenient way to
express complex queries, write query as a sequential program
consisting of a series of assignments followed by an expression
whose value is displayed as a result of the query.

Assignment must always be made to a temporary relation
variable.

Example: Write r +- s as

temp1 « Ilp_g(r)
temp2 < [1g_g ((temp1 x s) —Tlg.5 s (1)
result = temp1 — temp2
v The result to the right of the « is assigned to the relation variable on

the left of the «.

v May use variable in subsequentexpressions.

Assignment Operation - Example

. Find all customers who have anaccount from at least the
“Downtown” and the Uptown” branches.

v Query 1
ITen(O BN="Downtown-(depositor d&dcount)) m

[Ten(O Bn="Uptown-(depositor ggcount))
where CN denotes customer-name and BN denotes
branch-name.

v Query 2

IIcystomer-name, branch-name (d€pPOSItor [xtcount)

* Ptemp(branch-name) ({("Downtown’), (“Uptown’)})

9 s ST PO P T
Ay Ui]

versity of Lsukubs

Example Queries

. Find all customers who have an account at all brancheslocated
in Brooklyn city.

Icustomer-name, branch-name (depositor X account)
*+ Ipranch-name (Sbranch-city = “Brooklyn” (Pranch))

Extended Relational Algebra
Operations

Generalized Projection

Aggregate Functions

NS min ,‘ﬁ: L } LY.,
e . A L >
AR z (L
i E . '
/ University of Tsukuba

Generalized Projections

Extends the projection operation by allowing arithmetic functions
to be used in the projection list.

l_-[F1,F2, FI‘I(E)
E is any relational-algebra expression

Each of F4, F»p, ..., Fpare are arithmetic expressions involving
constants and attributes in the schema of E.

Given relation credit-info(customer-name, limit, credit-balance),
find how much more each person can spend:

Icustomer-name, limit — credit-balance (credit-info)

i Y. & AT ALY
Ut T

versity of Lsukubs

Aggregate Functions and Operations

. Aggregation function takes a collection of values and returns a
single value as a result.

avg: average value
min: minimum value
max: maximum value
sum: sum ofvalues
count: number of values

. Aggregate operation in relational algebra

G1,G2,.,Gn @ F1(A1),F2(A2),., Fn(An)(E)
v E is any relational-algebra expression
v G4, G,..., G,is a list of attributes on which to group (can be empty)
v Each F;is an aggregate function

v Each A,is an attribute name

Aggregate Operation - Example

Relation r:

A| B|C
o | al 7
a | B | 7
p|B |3
B |1 p |10
sum-C

@ sum(c) (r) -

‘;_ . . Aﬁ: \‘&‘ } ‘J_‘"’)
-:'_EE?:T_{J;:.;;;;_' 'F 4 (L& J:‘
{{p University of Tsukuba

Aggregate Operation - Example

Relation account grouped by branch-name:

branch-name | account-number balance
Perryridge A-102 400
Perryridge A-201 900
Brighton A-217 790
Brighton A-215 750
Redwood A-222 700

branch-name sum(balance) (account)

branch-name balance
Perryridge 1300
Brighton 1500
Redwood 700

(T U

wrversity of lsukuba

Aggregate Function

. Result of aggregation does not have aname

v Can use rename operation to give it a name

v For convenience, we permit renaming as part of aggregate
operation

branch-name sum(balance) as sum-balance (account)

YR INES

University of Tsukuba

Modification of Database

The content of the database may bemodified using the following
operations:

v Deletion
v Insertion
v Updating

All these operations are expressed using the assignment
operator.

9 s ST PO P T
Ay Ui

versity of Lsukuba

Deletion

. A delete request is expressed similarly to a query, exceptinstead
of displaying tuples to the user, the selected tuples are removed
from the database.

. Can delete only whole tuples; cannot delete values on only
particular attributes

. A deletion is expressed in relational algebra by:
r<r—E

where ris a relation and E is a relational algebraquery.

St I o AT JA L)
> NN

University of Tsukuba

Deletion Examples

. Delete all account records in the Perryridge branch.

account «<— account — G pranch-name = “Perryridge” (@ccount)

. Delete all loan records with amount in the range of 0 to 50

loan < loan — G zmount = 0 and amount < 50(/0an)
. Delete all accounts at branches located in Needham.

r1<= O pranch-city = “Needham” (@ccount . branch)

r, < Ilpranch-name, account-number, balance (1)

r3 < 11 cystomer-name, account-number (12 v depositor)
account «— account —r,

depositor < depositor — r;

Insertion

. 1o insert data into a relation, we either:;
v specify a tuple to be inserted

v Write a query whose result is a set of tuples to be inserted
. In relational algebra, an insertion is expressed by:
r< r v E
where ris a relation and E is a relational algebra expression.

. The insertion of a single tuple is expressed by letting £ be a
constant relation containing one tuple.

3 3 s TS O P
> NN

University of Isukiib

Insertion Example

Insert information in the database specifying that Smith has
$1200 in account A-973 at the Perryridge branch.

account « account v {(“Perryridge”, A-973, 1200)}
depositor « depositor w {("Smith”, A-973)}

Provide as a gift for all loan customers in the Perryridge branch,
a $200 savings account. Let the loan number serve as the
account number for the new savings account.

r < (Gbranch-name = “Perryridge” (DDFFOWEF tﬂan)) account

<« account v Hbranch-name, account-number, 200 (.*'1)

de pDSi tor « dep ositor v chsmmer-namej loan-number: (f 1)

nlr \ ﬂal o L]
Ay Ui]

versity of Lsukubs

Update

A mechanism to change a value in a tuple without charging all
values in the tuple

Use the generalized projection operator to do thistask

r<—1Il e m A (N

Each F, is either the ith attribute of r, if the ith attribute is not
updated, or, if the attribute is to be updated

Fiis an expression, involving only constants and the attributes of
r, which gives the new value for the attribute

R IN

versity of Lsukuba

Update Example

. Make interest payments by increasing all balances by 5 percent.

account < I1 an. BN, BAL * 1.05(@ccount)

where AN, BN and BAL stand for account-number, branch-name
and balance, respectively.

. Pay all accounts with balances over $10,000
6 percent interest and pay all others Spercent

account< TI an, g, BAL * 1.06 (O BAL > 10000 (@CCOUNY))
v ITan, BN, BAL *1.05 (OBAL < 10000 (@CCOUNY))

SQL

Basic Structure
SetOperations

Aggregate Functions
Nested Subqueries

Derived Relations
Modification of the Database
Data Definition Language

3 82 O =
. University o

2 "’! »
reba

[sk

Basic Structure

SQL is based on set and relational operations with certain
modifications and enhancements

A typical SQL query has the form:
select A, A,, ..., A,
fromry, r, ..., 1,
where P

« Ajs represent attributes
v IS represent relations
+ Pis a predicate.

This query is equivalent to the relational algebra expression.

ITa1, a2 . an(Op (XX ... X 1))

The result of an SQL query is a relation.

The Select Clause

The select clause corresponds to the projection operation of the
relational algebra. It is used to list the attributes desired in the result of a
query.

Find the names of all branches in the loan relation

select branch-name
from /oan

In the “pure” relational algebra syntax, the query would be:
1_[branch-name("D‘an)
An asterisk in the select clause denotes “all attributes”

select *
from /oan

NOTES:

v SQL does not permit the ‘-’ character in names, so you would use, for
example, branch_name instead of branch-name in a real implementation.
We use ‘-’ since it looks nicer!

v SQL names are caseinsensitive.

University of Tsukuba

The Select Clause (Cont.)

SQL allows duplicates in relations as well as in query results.

To force the elimination of duplicates, insert the keyword distinct
after select.
Find the names of all branches in the loan relations, and remove

duplicates

select distinct branch-name
from loan

The keyword all specifies that duplicates not be removed.

select all branch-name
from /oan

3 3 s T U T
A Lh

wrversity of lsukuba

The Select Clause (Cont.)

= [he select clause can contain arithmetic expressionsinvolving
the operation, +, —, *, and /, and operating on constants or
attributes of tuples.

= [he query:

select loan-number, branch-name, amount * 100
from /oan

would return a relation which is the same as the /loan relations,
except that the attribute amount is multiplied by 100.

iﬁ‘ ‘EH(’ } % f}—’:

University of Tsukuba

The Where Clause

The where clause corresponds to the selection predicate of the
relational algebra. If consists of a predicate involving attributes
of the relations that appear in the from clause.

The find all loan number for loans made a the Perryridge branch
with loan amounts greater than $1200.

select Joan-number
from loan
where branch-name = ‘Perryridge’ and amount > 1200

Comparison results can be combined using the logical
connectives and, or, and not.

Comparisons can be applied to results of arithmetic expressions.

Al \ o ST S LT
W~ .

wrversity of lsukuba

The Where Clause (Cont.)

SQL Includes a between comparison operator in order to simplify
where clauses that specify that a value be less than or equal to
some value and greater than or equal to some othervalue.

Find the loan number of those loans with loan amounts between

$90,000 and $100,000 (that is, =$90,000 and <$100,000)
select Joan-number
from loan
where amount between 90000 and 100000

:
7/

- R PN
ac» LixX /N1
W University of Tsukuba

/L

The From Clause

The from clause corresponds to the Cartesian product operation of the

relational algebra. It lists the relations to be scanned in the evaluation of
the expression.

Find the Cartesian product borrower x loan

select *
from borrower, loan

Find the name, loan number and loan amount of all customers havinga
loan at the Perryridge branch.

select customer-name, borrower.loan-number, amount
from borrower, loan

where borrower.loan-number = loan.loan-number and
branch-name = ‘Perryridge’

i Y. & SR 2NN
Ay Ui

versity of Lsukuba

The Rename Operation

The SQL allows renaming relations and attributes using the as
clause:

old-name as new-name
Find the name, loan number and loan amount of all customers;

rename the column name loan-number as loan-id.

select customer-name, borrower.loan-number as loan-id, amount
from borrower, loan
where borrower.loan-number = loan.loan-number

Tuple Variables

Tuple variables are defined in the from clause via the use ofthe
as clause.

Find the customer names and their loan numbers forall
customers having a loan at some branch.

select customer-name, T.loan-number, S.amount
from borrower as T, loan as S
where T./loan-number = S.loan-number

Find the names of all branches that have greater assets than
some branch located in Brooklyn.

select distinct T.branch-name
from branch as T, branch as S
where T.assets > S.assets and S.branch-city = ‘Brooklyn’

e \’ & SR 2NN
U

wrversity of lsukuba

String Operations

SQL includes a string-matching operator for comparisons on character
strings. Patterns are described using two special characters:

v percent (%). The % character matches any substring.

v underscore (_). The _character matches any character.
Find the names of all customers whose street includes the substring
“Main”.

select customer-name
from customer
where customer-street like - % Main%:-

Match the name "Main%”
like -Main\%- escape -\
SQL supports a variety of string operations such as
v concatenation (using”||”)

v converting from upper to lower case (and vice versa)
v finding string length, extracting substrings, efc.

Ordering the Display of Tuples

List in alphabetic order the names of all customers having aloan
in Perryridge branch

select distinct customer-name

from borrower, loan

where borrower loan-number - loan.loan-number and
branch-name = -Perryridge-

order by customer-name

We may specify desc for descending order or asc forascending
order, for each attribute; ascending order is the default.

v E.g. order by customer-name desc

8.5 &,

v Uni 7

\

versity of Lsukubs

Duplicates

In relations with duplicates, SQL can define how many copies of
tuples appear in the result.

Multiset versions of some of the relational algebra operators—
given multiset relations ry and ry:
1. If there are ¢, copies of tuple ¢, in ry, and t; satisfies selections Gg,
then there are ¢, copies of t;in Gg(r,).

2. For each copy of tuple t, in r,, there is a copy of tuple I14(t;) in I1a(r4)
where [14(t;) denotes the projection of the single tuple t..

3. If there are c, copies of tuple ¢, in r, and c, copies of tuple £, in r,,
there are ¢, x ¢, copies of the tuple t,. L, inry X r,

Duplicates (Cont.)

Example: Suppose multiset relations ry (A, B) and r, (C)
are as follows:

ri=A{(1, a) (2,a)} .= {(2), (3), (3)}

Then Ilg(ri) would be {(a), (a)}, while I1g(r1) x r, would be
{(a,2), (a,2), (a,3), (a,3), (a,3), (a,3)}

SQL duplicate semantics:

select A, Ay, ..., Ap
from rq, 1o, ..., 'y
where P

is equivalent to the multiset version of the expression:

I1 a1 a2 Aan(COp(riX rox ... X 1))

Set Operations

The set operations union, intersect, and except operateon
relations and correspond to the relational algebra operations

U, M, —.

Each of the above operations automatically eliminates
duplicates; to retain all duplicates use the corresponding multiset
versions union all, intersect all and exceptall.

Suppose a tuple occurs m times in r and n times in s, then,it
OCCuUrs:

v. m +ntimesin runion alls
v min(m,n) times in r intersect all s

v _max(0, m—n) times in rexcept all s

" ST PO AT
B ko

University of Tsukuba

Set Operations

Find all customers who have a loan, anaccount, or both:

(select customer-name from depositor)
union
(select customer-name from borrower)

Find all customers who have both a loan and an account.

(select customer-name from depositor)
intersect
(select customer-name from borrower)

Find all customers who have an account but noloan.

(select customer-name from depositor)

except
(select customer-name from borrower)

e YR NS

University of Tsukuba

Aggregate Functions

. These functions operate on the multiset of values of a column of
a relation, and return a value

avg: average value
min: minimum value
max: maximum value
sum: sum ofvalues
count: number of values

Aggregate Functions (Cont.)

Find the average account balance at the Perryridgebranch.

select avg (balance)
from account
where branch-name = ‘Perryridge’

Find the number of tuples in the customerrelation.

select count (¥)
from customer

Find the number of depositors in the bank.

select count (distinct customer-name)
from depositor

8.5 &,

m) Unii

\

versity of Lsukuba

Aggregate Functions - Group By

Find the number of depositors for each branch.

select branch-name, count (distinct customer-name)

from depositor, account

where depositor.account-number = account.account-number
group by branch-name

Note: Attributes in select clause outside of aggregate functions
must appear in group by list

0

Al ' l& ST
v University o

pLb "! »
reba

[sk

Aggregate Functions - Having Clause

Find the names of all branches where the average account
balance is more than $1,200.

select branch-name, avg (balance)
from account

group by branch-name

having avg (balance) > 1200

Note: predicates in the having clause are applied after the
formation of groups whereas predicates in the where clause are
applied before forming groups

o \) Aohs Wi
() University o etiba

[sk

Nested Subqueries

SQL provides a mechanism for the nesting of subqueries.

A subquery is a select-from-where expression that is nested
within another query.

A common use of subqueries is to perform tests forset
membership, set comparisons, and set cardinality.

D DL W
P University of Tsukuba

Example Query

Find all customers who have both an account and a loan at the
bank.

select distinct customer-name
from borrower
where customer-name in (select customer-name

from depositor)

Find all customers who have a loan at the bank but do not have
an account at the bank

select distinct customer-name

from borrower

where customer-name not in (select customer-name
from depositor)

e YR NS

University of Tsukuba

Example Query

. Find all customers who have both an account and a loan at the
Perryridge branch

select distinct customer-name

from borrower, loan

where borrower.loan-number = loan.loan-number and
branch-name = “Perryridge” and

(branch-name, customer-name) in
(select branch-name, customer-name

from depositor, account
where depositor.account-number =
account.account-number)

. Note: Above query can be written in a much simplermanner.
The formulation above is simply to illustrate SQL features.

(T U

wrversity of lsukuba

Set Comparison

Find all branches that have greater assets than some branch
located in Brooklyn.

select distinct T7T.branch-name

from branch as T, branch as S

where T.assets > S.assetsand
S.branch-city = .Brooklyn-

Same query using > some clause

select branch-name
from branch
where assefs >some
(select assets
from branch
where branch-city = -Brooklyn-)

9 s ST PO P T
Ay Ui

versity of Lsukuba

Definition of Some Clause

. F <comp>somer< dte rs.t (F<comp>i)
Where <comp> can be: <, <, >, = #

0
(5<some | 5 |) =true
6 (read: 5 < some tuple in therelation)
0
(5<some | 5 |) =false
0
(O =some | § |)=true
0
(5#some | 5 |)=true (since 0 #5)

(= some) =1n
However, (+ some) = not in

B8 B o
() Uy

wrversity of lsukuba

Definition of All Clause

F <comp>allr< VvV te r(F <comp>t)

0
(O5<all | §5 |)=false
6
6
(5<all {10])=true
4
(o=all | § |)=false
4
(5=all| 6 |)=true (since 5# 4 and 5 #6)

(= all) = not In
However, (= all) = in

0

Al ' l& ST
v University o

pLb "! »
reba

[sk

Example Query

Find the names of all branches that have greater assets than all
branches located in Brooklyn.

select branch-name

from branch

where assets >all
(select assefls

from branch
where branch-city = ‘Brooklyn’)

<

versity of Lsukuba

Test for Empty Relations

The exists construct returns the value true if the argument
subquery is nonempty.

exists re r<@
hotexists re r=0

B2 S

versity of Lsukuba

Example Query

Find all customers who have an account at all branches located in
Brooklyn.

select distinct S.customer-name
from deposiforas S
where not exists ((select
branch-name from
branch
where branch-city = ‘Brooklyn’)
except
(select R.branch-name
from depositor as T, account as R
where T.account-number = R.account-number and

S.customer-name = T.customer-name))

Notethat X - Y =0 © XY
Note: Cannot write this query using = all and its variants

o RPN

University of Tsukuba

Test for Absence of Duplicate Tuples

The unique construct tests whether a subquery has any
duplicate tuples in its result.

Find all customers who have at most one account atthe
Perryridge branch.
select T.customer-name

from depositoras T
where unique (

select R.customer-name

from account, depositor as R

where T.customer-name = R.customer-name and
R.account-number = account.account-number and
account.branch-name = Perryridge’)

8.5 &,

m) Unii

\

versity of Lsukuba

Example Query

Find all customers who have at least two accounts atthe
Perryridge branch.

select distinct T.customer-name
from depositor T
where not unique (
select R.customer-name
from account, depositor as R
where T.customer-name = R.customer-name and
R.account-number = account.account-numberand

account.branch-name = :Perryridge-)

<

versity of Lsukuba

Example Queries

. A view consisting of branches and theircustomers
create view all-customer as
(select branch-name, customer-name
from depositor, account
where depositor.account-number = account.account-number)
union
(select branch-name, customer-name
from borrower, loan
where borrower.loan-number = loan.loan-number)

. Find all customers of the Perryridge branch

select customer-name
from all-customer
where branch-name = ‘Perryridge’

0 2 & SR PR TR
S I NP

University of Tsukuba

Derived Relations

Find the average account balance of those branches where the
average account balance is greater than $1200.

select branch-name, avg-balance
from (select branch-name, avg (balance)
from account
group by branch-name)
as result (branch-name, avg-balance)
where avg-balance > 1200

Note that we do not need to use the having clause, since we
compute the temporary relation result in the from clause, and the
attributes of result can be used directly in the where clause.

i Y. & SR 2NN
Ay Ui

versity of Lsukuba

Modification of the Database - Deletion

Delete all account records at the Perryridge branch

delete from account
where branch-name = -Perryridge-

Delete all accounts at every branch located in Needham city.

delete from account
where branch-name in (select branch-name
from branch
where branch-city =-Needham-)
delete from depositor
where account-number in
(select account-number
from branch, account
where branch-city =-Needham-
and branch.branch-name = account.branch-name)

SEL s)y
() Uni 7

versity of Lsukubs

Example Query

Delete the record of all accounts with balances belowthe
average at the bank.

v

delete from account
where balance < (select avg (balance)
from account)

Problem: as we delete tuples from deposit, the average balance
changes

Solution used in SQL:

. First, compute avg balance and find all tuples to delete
. Next, delete all tuples found above (without recomputing avg or

retesting the tuples)

- FR NG

versity of Lsukuba

Modification of the Database - Insertion

Add a new tuple to account

insert into account
values (‘A-9732’, ‘Perryridge’,1200)
or equivalently

insert into account (branch-name, balance, account-number)
values (‘Perryridge’, 1200, ‘A-9732’)

Add a new tuple to account with balance set tonull

insert into account
values (‘A-777’,'"Perryridge’, null)

SEL s)y
() Uni 7

versity of Lsukubs

Modification of the Database - Insertion

Provide as a gift for all loan customers of the Perryridge branch, a
$200 savings account. Let the loan number serve as the account
number for the new savings account

insert into account
select loan-number, branch-name, 200
from /oan
where branch-name = ‘Perryridge’
insert into depositor
select customer-name, loan-number
from /oan, borrower
where branch-name = Perryridge’
and /oan.account-number = borrower.account-number

The select from where statement is fully evaluated before any of

its results are inserted into the relation (otherwise queries like
insert into fable1 select * from table1

would cause problems

9 s ST PO P T
Ay Ui

versity of Lsukuba

Modification of the Database - Updates

Increase all accounts with balances over $10,000 by 6%, all
other accounts receive 5%.

v Write two update statements:

update account
set balance = balance * 1.06
where balance > 10000

update account
set balance = balance * 1.05
where balance < 10000

v The order is important!

Data Definition Language (DDL)

Allows the specification of not only a set of relations butalso
information about each relation, including:

The schema for eachrelation.

The domain of values associated with each attribute.
Integrity constraints

The set of indices to be maintained for eachrelations.
Security and authorization information for each relation.

The physical storage structure of each relation on disk.

A
(i) U

wrversity of lsukuba

Domain Types in SQL

char(n). Fixed length character string, with user-specified length n.

varchar(n). Variable length character strings, with user-specified maximum
length n.

int. Integer (a finite subset of the integers that is machine-dependent).

smallint. Small integer (a machine-dependent subset of the integer
domain type).

numeric(p,d). Fixed point number, with user-specified precision of p digits,
with n digits to the right of decimal point.

. real, double precision. Floating point and double-precision floating point
numbers, with machine-dependent precision.

float(n). Floating point number, with user-specified precision of at least n
digits.

Create Table Construct

An SQL relation is defined using the create table
command:

create table r (A1 D4, Ao D5, ..., A, D,,
(integrity-constraint,),

(ir:tegrity—constraintk))
v ris the name of the relation
v each A, is an attribute name in the schema of relation r
v D;is the data type of values in the domain of attribute A,
Example:

create table branch
(branch-name char(15) not null,
branch-city char(30),
assets integer)

i Y. & SR 2NN
Ay Ui

versity of Lsukuba

Integrity Constraints in Create Table

not null
primary key (A4, ..., A,)
check (P), where P is a predicate

Example: Declare branch-name as the primary key for
branch and ensure that the values of assets are non-
negative.
create table branch

(branch-namechar(15),

branch-city char(30)

assets integer,

primary key (branch-name),

check (assets >=0))

primary key declaration on an attribute automatically
ensures not null in SQL-92 onwards, needs to be

explicitly stated in SQL-89

9 8 o By TNy
> LI NT
) il !

=
VeSS
versity of Lsukubs

Drop and Alter Table Constructs

The drop table command deletes all information about the
dropped relation from the database.

The after table command is used to add attributes to an
existing relation. All tuples in the relation are assigned null
as the value for the new attribute. The form of the alter
table command is

alter table radd A D

where A is the name of the attribute to be added to relationr
and D is the domain of A.

The alter table command can also be used to drop attributes
of a relation

alter table rdrop A
where A is the name of an attribute of relationr

v Dropping of attributes not supported by many databases

9 s ST PO P T
) Uy

wrversity of lsukuba

SQL Data Definition for Part of the Bank Database

create table customer
(customer-name char(20),
customer-street char(30),
customer-city char(30),
primary key (customer-naine))

create table branch
(branch-name char(15),
branch-city char(30),
assets integer,
primary key (branch-name),
check (assets > = 0))

create table account
(account-number char(10),
branch-name char(15),
balance integer,
primary key (account-number),
check (balance > = 0))

create table depositor
(customer-name char(20),
account-number char(10),
primary key (customer-name, account-number))

~ YN PN

University of Tsukuba

Q&A

Please write any feedback regarding class to
sayans@slis.tsukuba.ac.jp
Sub: Informatics class feedback

University of lsukuba

